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У роботі отримане гіперболічне рівняння теплопровідності, яке адекватно описує нестаціонарні процеси теплообміну рідини (теплоносія) у ґрунтових теплообмінниках, призначених для підвищення енергоефективності функціонування спортивних будівель та споруд.

The paper presents a hyperbolic heat conduction equation that adequately describes the non-stationary processes of heat exchange of a fluid (heat carrier) in ground heat exchangers designed to improve the energy efficiency of sports buildings and structures.

Вивчення процесів нестаціонарної теплопровідності, розрахунок параметрів середовищ в умовах  нестаціонарної теплопровідності останніх – важливий напрямок, який використовується в прикладних задачах тепломасообміну. При розв’язанні математичної моделі при різних граничних умовах є проблема достовірності чисельних розрахунків, тому є необхідність в вирішенні математичної моделі аналітичним методом. Наприклад, математична модель процесів тепломасообміну в акумуляторі теплоти при його зарядці та розрядці вирішується аналітично методом функції Гріна [1]. Акумулятори великої теплової ємності організовуються у природному ґрунтовому масиві впорядкованого сукупністю (“кущем”) вертикальних/горизонтальних теплообмінників, розміщених або у бурових свердловинах. У результаті акумулювання створюється основна область накопиченої теплоти, яка обмежена зовнішнім контуром “куща”, певного об’єму й з певною температурою, а також буферна підобласть деякого об’єму, яка дотикається до основної і є результатом теплової взаємодії  об’єму основної області  з оточуючим ґрунтовим масивом, який має постійну температуру.  Найменші розміри буферної підобласті будуть у випадку рівномірного по основному об’єму розподілу температури. Це досягається організацією однакового теплового навантаження, яке припадає на кожний теплообмінник, однаковим потенціалом проміжного теплоносія й малим перепадом його температур, відповідно на вході й виході кожного теплообмінника й низкою інших вимог. Розміри буферної підобласті можна зменшувати, якщо створити верхній теплоізоляційний щит. Це призведе до зменшення габаритів усієї конструкції й відпаде необхідність теплоізоляції трубопроводів, які підводять й відводять теплоносій [2, 3]. При цьому габарити конструкції повинні бути оптимальними, тобто відповідати певному критерію, за якого відношення об’єму буферної підобласті до об’єму всього акумулятора теплоти є мінімальним. У рамках дослідження розроблено та застосовано гіперболічне рівняння теплопровідності. Це рівняння забезпечує адекватне моделювання нестаціонарних процесів теплообміну теплоносія в ґрунтових теплообмінниках, що використовуються для підвищення енергоефективного теплопостачання спортивних споруд [1, 2]. При розв’язку початково-крайової задачі (задачі Коші) у циліндричній системі координат враховано рух рідини. Для аналітичного розв’язку було використано метод функцій Гріна.
Даний розв'язок, заснований на гіперболічній теорії теплопровідності, яка враховує скінченність швидкості розповсюдження тепла, що є ключовим для точного моделювання. Використання цього підходу дозволяє: по-перше, точніше встановлювати вимоги до міцності трубних елементів ґрунтових теплообмінників з урахуванням дії термодинамічних навантажень; по-друге, більш детально і достовірно визначати температурний профіль у циліндричній трубі. Зрештою, це дає можливість оптимізувати перехідні процеси (пуск/зупинка) ґрунтових теплообмінників, що є прямим шляхом до підвищення енергоефективності та екологічності експлуатації закритих спортивних будівель, які використовують ґрунтові акумулятори теплоти та теплонасосні системи опалення та охолодження [4, 5].
Аналітичне представлення нестаціонарних теплових полів, що виникають у прямолінійних трубних елементах ґрунтових теплообмінників, забезпечено завдяки точним періодичним та нестаціонарним розв'язкам гіперболічного рівняння теплопровідності (відомого також як телеграфне рівняння або лінійне рівняння Клейна–Гордона). Ці рішення отримані безпосередньо в часовій області із застосуванням методу функцій Гріна, що відповідає підходу, який називається не-Фур’є-аналіз (аналогічно роботам А.Б. Шварцбурга), і дозволяє уникнути традиційних Фур’є-розкладів. З метою врахування неізометричних параметрів, конвективний теплоперенос розраховано аналітично за допомогою рівняння теплообміну [6]. Застосовано модель, де перенесення теплоти для кожного з двох середовищ (рідина – тверде тіло) описується окремим рівнянням теплообміну: а) для рідкої фази (теплоносій, водний розчин пропіленгліколю); б) для твердого тіла (стінка труби, ґрунт). Під час моделювання було задано початкові та граничні (крайові) умови, що відповідають третій крайовій задачі. Ці умови були сформовані згідно з реальними розрахунковими залежностями та параметрами, характерними для систем акумулювання теплоти в ґрунтовому масиві, а також з урахуванням специфіки експлуатації та ключових характеристик сучасних закритих спортивних споруд [7, 8].
Результати роботи, що демонструють розподіл температурного поля в одиночних прямолінійних трубних елементах (теплообмінниках), підтверджують можливість та доцільність використання таких теплообмінників-колекторів для вилучення природної теплоти ґрунту. Це забезпечує підвищення енергоефективності та екологічності функціонування спортивних будівель і споруд. Крім того, ці результати мають потенціал для удосконалення існуючих інженерних методик розрахунку подібних систем, що може бути використано для оптимізації конструктивних елементів колекторів як на етапі проєктування, так і в умовах реальної експлуатації.
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